Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Voprosy Onkologii ; 68(5):598-604, 2022.
Article in Russian | EMBASE | ID: covidwho-2252674

ABSTRACT

We aim aim to compare immunophenotypic charac-teritics of atypical epithelium (AE) with COVID-19-induced diffuse alveolar damage (DAD) and pulmonary lepidic-growth adenocarcinoma, accounting for cell cycle control, proliferation and differentiation]. Methods. We examined pulmonary tissue specimens from twenty-four fatal cases of CO VID-19-induced acute respiratory damage syndrome confirmed by autopsy (Group 1) and four cases of pulmonary lepidic-growth adenocarcinoma (Group 2). Perpendicular dimensions of 10 nuclei were measured on the H&E slides, means of their sums of products (SPNM) were calculated. We have used p53, Ki67, pi6, p63 antibodies for immunohistochemical staining in each case. We evaluate colour intensity, rate of stained cells of AE and the product of these parameters. We evaluated separately Nuclear and cyto-plasmic staining (couple) and only cytoplasmic staining (cyt) for pi6 expression. We measured proliferative index only at KI-67 stained slides. U-test and Spearman rank correlation test were used for statistical analysis. Results. Expression of p63 was higher in group 1 (p=0.001), while pi6 was more frequently expressed in group 2 (p=0.002). We have found no statistically significant differences (p>0.1) in the p53 and Ki67 expression. Group 1 showed There was negative correlation between the number of days from onset of symptoms and the following variables: Ki67 (r=M).587, p=0.003);SPNM (r 0.406, p=0.049). Conclusion. The present study has shown heterogeneity in levels of cell cycle control expression, proliferation and differentiation of atypical epithelium in the pulmonary lep-idic-growth adenocarcinoma and CO VID-19-induced diffuse alveolar damage.Copyright © 2022 Izdatel'stvo Meditsina. All rights reserved.

2.
Emerg Microbes Infect ; 11(1): 2315-2325, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2004929

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant morbidity and mortality worldwide. Despite a successful vaccination programme, the emergence of mutated variants that can escape current levels of immunity mean infections continue. Herein, we report the development of CT-P63, a broad-spectrum neutralizing monoclonal antibody. In vitro studies demonstrated potent neutralizing activity against the most prevalent variants, including Delta and the BA.1 and BA.2 sub-lineages of Omicron. In a transgenic mouse model, prophylactic CT-P63 significantly reduced wild-type viral titres in the respiratory tract and CT-P63 treatment proved efficacious against infection with Beta, Delta, and Omicron variants of SARS-CoV-2 with no detectable infectious virus in the lungs of treated animals. A randomized, double-blind, parallel-group, placebo-controlled, Phase I, single ascending dose study in healthy volunteers (NCT05017168) confirmed the safety, tolerability, and pharmacokinetics of CT-P63. Twenty-four participants were randomized and received the planned dose of CT-P63 or placebo. The safety and tolerability of CT-P63 were evaluated as primary objectives. Eight participants (33.3%) experienced a treatment-emergent adverse event (TEAE), including one grade ≥3 (blood creatine phosphokinase increased). There were no deaths, treatment-emergent serious adverse events, TEAEs of special interest, or TEAEs leading to study drug discontinuation in the CT-P63 groups. Serum CT-P63 concentrations rapidly peaked before declining in a biphasic manner and systemic exposure was dose proportional. Overall, CT-P63 was clinically safe and showed broad-spectrum neutralizing activity against SARS-CoV-2 variants in vitro and in vivo.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Creatine Kinase , Humans , Mice , Spike Glycoprotein, Coronavirus
3.
J Pathol ; 254(4): 303-306, 2021 07.
Article in English | MEDLINE | ID: covidwho-1258101

ABSTRACT

The 2021 Annual Review Issue of The Journal of Pathology contains 14 invited reviews on current research areas of particular importance in pathology. The subjects included here reflect the broad range of interests covered by the journal, including both basic and applied research fields but always with the aim of improving our understanding of human disease. This year, our reviews encompass the huge impact of the COVID-19 pandemic, the development and application of biomarkers for immune checkpoint inhibitors, recent advances in multiplexing antigen/nucleic acid detection in situ, the use of genomics to aid drug discovery, organoid methodologies in research, the microbiome in cancer, the role of macrophage-stroma interactions in fibrosis, and TGF-ß as a driver of fibrosis in multiple pathologies. Other reviews revisit the p53 field and its lack of clinical impact to date, dissect the genetics of mitochondrial diseases, summarise the cells of origin and genetics of sarcomagenesis, provide new data on the role of TRIM28 in tumour predisposition, review our current understanding of cancer stem cell niches, and the function and regulation of p63. The reviews are authored by experts in their field from academia and industry, and provide comprehensive updates of the chosen areas, in which there has been considerable recent progress. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/genetics , COVID-19/virology , Neoplasms/pathology , SARS-CoV-2/pathogenicity , COVID-19/pathology , Genomics/methods , Humans , Neoplasms/complications , Neoplasms/genetics , Organoids/pathology , United Kingdom
4.
Stem Cell Reports ; 15(5): 1015-1025, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-864993

ABSTRACT

Despite the central importance of the respiratory system, the exact mechanisms governing lung repair after severe injury remain unclear. The notion that alveolar type 2 cells (AT2s) self-renew and differentiate into alveolar type 1 cells (AT1s) does not fully encompass scenarios where these progenitors are severely affected by disease, e.g., H1N1 influenza or SARS-CoV-2 (COVID-19). Intrapulmonary p63+ progenitor cells, a rare cell type in mice but potentially encompassing more numerous classic basal cells in humans, are activated in such severe injury settings, proliferating and migrating into the injured alveolar parenchyma, providing a short-term "emergency" benefit. While the fate of these cells is controversial, most studies indicate that they represent a maladaptive repair pathway with a fate restriction toward airway cell types, rarely differentiating into AT2 or AT1 cells. Here, we discuss the role of intrapulmonary basal-like p63+ cells in alveolar regeneration and suggest a unified model to guide future studies.


Subject(s)
Lung/physiology , Regeneration , Stem Cells/metabolism , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , COVID-19/pathology , COVID-19/virology , Cell Differentiation , Humans , Lung/metabolism , Lung Diseases/pathology , Lung Diseases/therapy , Lung Diseases/virology , SARS-CoV-2/isolation & purification , Stem Cell Transplantation , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL